待ち遠しい量子情報の制御技術

 量子情報とは、0と1からなる2進数の「ビット」を基本単位とするような古典力学的な状態で表される従来の情報(古典的情報)に対して、0と1の みならず0と1の任意の重ね合わせ状態を取ることができるような量子力学的な状態で表される情報を指し、量子2準位系の状態 で記述される「量子ビット(qubit)」を基本単位とする。

 量子ビットを記憶し、それを利用した情報処理を実行できるデバイスを量子ビット素子という。量子ビットでは、通常のビット表現0,1に加え、それらの量子的重ね合わせ状態が利用されるため、ノイマン型に代表される従来の計算機とは全く異なるアルゴリズムや計算機アーキテクチャを構築できる。こうした計算機は量子計算機と呼ばれ、量子ビット素子はその基幹部に対応する。

 マグノン(magnon)は、結晶格子中の電子のスピンの構造を量子化した準粒子である。一方、結晶格子中での原子やイオンの振動を量子化した準粒子は、フォノンという。量子力学における波の描像では、マグノンはスピン波を量子化したものと見なすことができる。準粒子として、マグノンは一定の量のエネルギーと格子運動量を運搬する。プランク定数を2πで割ったディラック定数のスピンを持つ。



 今回、 東京大学(東大)は7月10日、超伝導回路を用いた量子ビット素子と強磁性体中の集団的スピン揺らぎの量子(マグノン)をコヒーレントに相互作用させることに成功し、ミリメートルサイズの磁石の揺らぎが量子力学的に振る舞うことを発見したほか、その揺らぎの自由度を制御する方法を開発したと発表した。

 同成果は、東大 先端科学技術研究センター 量子情報物理工学分野の中村泰信 教授(理化学研究所創発物性科学研究センター チームリーダー)、田渕豊 特任研究員(現 日本学術振興会 特別研究員)および同大 工学系研究科 物理工学専攻 修士学生の石野誠一郎氏らによるもの。詳細は米国科学振興協会(AAAS)発行の学術雑誌「Science」に掲載された。


 東大、ミリメートルサイズの磁石が量子力学的に振る舞うことを発見

 量子コンピュータや量子暗号通信といった量子力学の応用分野の1つに、情報処理と通信を統合した量子情報ネットワーク技術があるが、これを実現するためには、互いの間で量子情報を授受するためのインタフェースが必要となり、マイクロ波と光の活用が期待されている。

 しかし、量子状態をコヒーレントに転写する方法があり、その手法として、ナノ機械振動子や単独の電子スピン、常磁性電子スピン集団などを用いた研究が進められてきたが、強磁性体中のスピン集団に着目し、スピン波のエネルギー励起運動の量子であるマグノンを用いた研究はこれまでなかったという。

 研究では、強磁性絶縁体であるイットリウム鉄ガーネット(YIG)単結晶球の中のマグノンと共振器の中のマイクロ波光子の結合について調査を実施。その結果、絶対零度に近い状態において、共鳴スペクトルに反交差が見られ、両者のコヒーレントな結合が示されたという。

 また、1つのマイクロ波空洞共振器の中にYIG球とミリメートルスケールの超伝導回路上で動作する量子ビットを配置した実験では、超伝導量子ビットとYIG球上のマグノンの間のエネルギー量子のコヒーレントな相互作用の証拠を、真空ラビ分裂と呼ぶエネルギー準位の分裂として観測することに成功したとのことで、これにより量子力学的な基底状態ある強磁性体中のスピン集団と、超伝導量子ビットの間でエネルギー量子をコヒーレントにやりとりできることが示されたとする。

 今回の成果について研究グループでは、今後、超伝導量子ビットとマグノンの結合を用いて、強磁性体中の集団スピン励起の自由度であるマグノンの量子状態を自在に制御し、観測することができるようになることが期待されるとするほか、並行してマグノンと光通信波長帯光子との相互作用の研究も進めているとのことで、マグノンを介したマイクロ波と光の間の量子インタフェースの実現やそれを用いた量子中継器への応用を目指すとコメントしている。


 量子情報とは?

 量子情報(quantum information)は、量子力学に基づいて状態が決定する情報のことである。二値もしくはそれらの状態の重ね合わせによって表現される。

 量子情報とその他の情報を区別するため、一般的に量子情報でないものは古典的情報と呼ばれる。古典的情報は理論計算機科学において、0と1の二値(ビット)によって表現される。

 一方、量子情報は0と1の二値だけでなくそれらの重ね合わせの状態も含む。これは量子ビット(qubit)と呼ばれる。また、量子情報は古典情報と異なり任意の情報の複製を作ることができない。そして、量子情報が古典的情報と大きく異なるのは、情報を一度観測したら、その量子情報を破壊してしまうことである。

 量子情報は重ね合わせの状態と表現されるため、情報量が増加するように見えてしまうが1ビットと1量子ビットの情報量は全く同じである。これは量子情報を観測すると古典的な情報に収束するためである。

 量子情報を利用する量子コンピュータでは、多くの情報を重ね合わせた状態のまま並列で演算できるという性質を利用して、素因数分解など特定の種類の計算に関し高速化が期待されている。ただし、理論計算機科学における古典的なコンピュータと比較して、どのような性質の問題が量子コンピュータに向いているかについては、まだ明確になっていない。

 また、量子情報を使用した量子暗号では、観測によって重ね合わせ状態が収束して古典的状態になるという量子情報の性質を利用して、盗聴者の影響を排除する技術が確立できるため、通常の暗号通信では考えられないほど強固な通信を行えると期待されている。


参考 マイナビニュース: 東大、ミリメートルサイズの磁石が量子力学的に振る舞うことを発見


量子情報科学入門
クリエーター情報なし
共立出版
量子情報の物理―量子暗号、量子テレポーテーション、量子計算
クリエーター情報なし
共立出版

ブログランキング・にほんブログ村へ 人気ブログランキングへ   ←One Click please